New in situ mouse model to quantify alveolar epithelial fluid clearance.

نویسندگان

  • C Garat
  • E P Carter
  • M A Matthay
چکیده

Because the availability of transgenic mice makes it possible to examine the contribution of single genes to in vivo function, we developed a simple in situ mouse model that can be used to quantify isosmolar alveolar epithelial fluid clearance (AFC). Mice were killed, a tracheostomy was done, and then a test solution of a 5% isosmolar albumin solution with 0.1 micro Ci of 125I-labeled albumin was instilled via the trachea into the distal air spaces of both lungs. After instillation, the lungs were inflated to 7 cmH2O with 100% O2 and maintained at 37 degrees C by placing the animals under an infrared lamp. AFC was measured by the progressive increase in concentration of labeled and unlabeled protein over 1 h. The results indicated the following. 1) Basal, unstimulated AFC in mouse lungs was significantly faster than in ex vivo rat lungs (27 +/- 5% in in situ mice vs. 11 +/- 3% in ex vivo rat lungs; P < 0.05). 2) Comparison of equivalent doses (10(-4) M) of beta-adrenergic agonist (isoproterenol) and beta2-adrenergic agonists (terbutaline and salmeterol) indicated that stimulated clearance occurred only in presence of isoproterenol. 3) Because atenolol, a specific beta1-antagonist, abolished the effect of isoproterenol, the beta-adrenergic stimulation appears to be mediated by beta1-receptors. The rate of AFC in nonperfused mouse lungs was significantly faster than in prior studies of nonperfused lungs in rats and sheep. Interestingly, the stimulated clearance rate in mice was similar to the fast rates of AFC that we recently reported in patients recovering from hydrostatic pulmonary edema. This in situ model is a unique experimental preparation that can be readily used to quantify isosmolar epithelial fluid clearance in mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro and in vivo regulation of transepithelial lung alveolar sodium transport by serine proteases.

The amiloride-sensitive epithelial sodium channel (ENaC) constitutes a rate-limiting step for sodium (Na+) and water absorption across lung alveolar epithelium. Recent reports suggested that ENaC is regulated by membrane-bound extracellular serine proteases, such as channel-activating proteases (CAPs). The objectives of this study were to examine the role of serine proteases in the regulation o...

متن کامل

Inhibition of receptor for advanced glycation end-products (RAGE) improves alveolar fluid clearance and lung injury in a mouse model of acute respiratory distress syndrome (ARDS)

Rationale The receptor for advanced glycation end-products (RAGE) is a transmembrane multipattern receptor abundantly expressed on the basal surface of alveolar type (AT) I cells. RAGE is implicated in ARDS-associated alveolar inflammation [1,2], but its precise roles in lung injury remain unknown. It has been shown recently that RAGE axis could impact alveolar fluid clearance (AFC) through the...

متن کامل

ENaC-mediated alveolar fluid clearance and lung fluid balance depend on the channel-activating protease 1

Sodium transport via epithelial sodium channels (ENaC) expressed in alveolar epithelial cells (AEC) provides the driving force for removal of fluid from the alveolar space. The membrane-bound channel-activating protease 1 (CAP1/Prss8) activates ENaC in vitro in various expression systems. To study the role of CAP1/Prss8 in alveolar sodium transport and lung fluid balance in vivo, we generated m...

متن کامل

Acute bacterial pneumonia in rats increases alveolar epithelial fluid clearance by a tumor necrosis factor-alpha-dependent mechanism.

To study the rate and regulation of alveolar fluid clearance in acute pneumonia, we created a model of Pseudomonas aeruginosa pneumonia in rats. To measure alveolar liquid and protein clearance, we instilled into the airspaces a 5% bovine albumin solution with 1.5 microCi of 125I-human albumin, 24 h after intratracheal instillation of bacteria. The concentration of unlabeled and labeled protein...

متن کامل

Alveolar epithelial fluid transport and the resolution of clinically severe hydrostatic pulmonary edema.

To characterize the rate and regulation of alveolar fluid clearance in the uninjured human lung, pulmonary edema fluid and plasma were sampled within the first 4 h after tracheal intubation in 65 mechanically ventilated patients with severe hydrostatic pulmonary edema. Alveolar fluid clearance was calculated from the change in pulmonary edema fluid protein concentration over time. Overall, 75% ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 84 5  شماره 

صفحات  -

تاریخ انتشار 1998